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Abstract An important goal of conservation biology is the maintenance of ecosystem

processes. Incorporating quantitative measurements of ecosystem functions into conser-

vation practice is important given that it provides not only proxies for biodiversity patterns,

but also new tools and criteria for management. In the satellite era, the translation of

spectral information into ecosystem functional variables expands and complements the

more traditional use of satellite imagery in conservation biology. Remote sensing scientists
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have generated accurate techniques to quantify ecosystem processes and properties of key

importance for conservation planning such as primary production, ecosystem carbon gains,

surface temperature, albedo, evapotranspiration, and precipitation use efficiency; however,

these techniques are still unfamiliar to conservation biologists. In this article, we identify

specific fields where a remotely-sensed characterization of ecosystem functioning may aid

conservation science and practice. Such fields include the management and monitoring of

species and populations of conservation concern; the assessment of ecosystem represen-

tativeness and singularity; the use of protected areas as reference sites to assess global

change effects; the implementation of monitoring and warning systems to guide adaptive

management; the direct evaluation of supporting ecosystem services; and the planning and

monitoring of ecological restorations. The approaches presented here illustrate feasible

ways to incorporate the ecosystem functioning dimension into conservation through the use

of satellite-derived information.

Keywords Conservation planning � Ecosystem functioning descriptors �
Ecosystem monitoring � Environmental change � Protected areas �
Restoration ecology � Species–environment relationships

Introduction

Conservation biology has been described as a mission-driven science (Soulé and Wilcox

1980), although its specific goals have changed over time (Meine et al. 2006). The preser-

vation of biodiversity was the overall accepted objective for decades (Callicott et al. 1999).

Recently, however, a more general concern for maintaining the capacity of ecosystems to

sustain and regulate processes (e.g. nutrient and water dynamics, and carbon balance) has

gained consensus (Goldman et al. 2008; Naidoo et al. 2008). In fact, a growing number of

legislative agreements, such as the Convention on Biological Diversity, require specific

management schemes that address the functioning of ecosystems (Frid et al. 2008) to

explicitly consider the ecological processes that maintain biodiversity (e.g. Rouget et al.

2003) and the ecosystem services these processes provide (Armsworth et al. 2007).

The recent emergence of the biodiversity-ecosystem functioning paradigm (e.g. Naeem

2002; Hooper et al. 2005) has recognized the bidirectional relationship existing between

the conservation of biodiversity and of ecosystem processes, and the need to incorporate

ecosystem functioning parameters in conservation practice (Jax 2010). Why have few

studies analyzed ecosystem functioning in the field of conservation biology? We have

identified three possible (and not mutually exclusive) conceptual and logistic explanations

for this deficiency. (1) In contrast to many variables operating at the individual or popu-

lation levels, ecosystem functioning is characterized by ‘‘intangible’’ fluxes of matter and

energy. Intangibility presents an added challenge in any discipline (Allen and Hoekstra

1992); however, it becomes particularly problematic in conservation biology given the

strong link between this field and policy and decision-making. Actions involving easily

recognizable and perceivable entities are more appealing to politicians, conservation

managers, and the general public than ‘‘intangible’’ ones. Moreover, conservation biology

has traditionally focused more on the evolution than on the thermodynamics of ecosystems

(Callicott et al. 1999). (2) Despite the ‘‘inclusive’’ nature of conservation biology, con-

servationists typically do not receive the practical or theoretical training necessary to

understand ecosystem processes, particularly those that are strongly related to the geo-

physical sciences. (3) Insufficient effort, especially for terrestrial ecosystems (in contrast
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see Frid et al. 2008 for marine ecosystems), has been devoted to identifying specific

conservation tasks where techniques that study ecosystem functioning are particularly

useful and enable a clear connection with managers and decision makers.

One feasible way to incorporate ecosystem functioning indicators into conservation is

through the use of remote sensing tools (Duro et al. 2007; Gillespie et al. 2008; Horning

et al. 2010). Traditionally, satellite imagery has been primarily used in conservation

biology for classifying, describing, and mapping vegetation structure and species habitats

(Kerr and Ostrovsky 2003; Pereira and David Cooper 2006), but not for ecosystem

functioning characterization. Recently, this bias is being corrected with a slow but

increasing number of articles appearing in main conservation journals that specifically

incorporate satellite image products to address ecosystem functioning. A search in Scopus

(May 10, 2012) in three leading journals in the field revealed that, among all of the

conservation articles published since 2007 containing ‘‘remote sensing’’ in any of the

search fields ‘‘title, abstract, or keywords’’ (n = 76), only a small proportion (from 10 to

30 %) specifically addressed ecosystem functioning issues: Biological Conservation—12

out of 41, Biodiversity and Conservation—3 out of 25, and Conservation Biology—2

out of 10.

Ecosystem functioning can be defined as the collective effect of multiple ecosystem

processes that ultimately determines the rate of matter and energy fluxes (Hooper et al.

2005), such as primary production, ecosystem gas exchange, energy balance, evapo-

transpiration, nitrogen mineralization, decomposition, and nutrient loss. In this sense, the

translation of satellite spectral information into functional attributes of ecosystems expands

the value of remote sensing for conservation science. Spectral information has been suc-

cessfully used to model functioning variables such as primary production (Ruimy et al.

1994), seasonality (Potter and Brooks 1998) and phenology (Reed et al. 1994) of carbon

gains, evapotranspiration (Moran and Jackson 1991), surface energy balance (Hall et al.

1992), fraction of absorbed photosynthetically active radiation (fAPAR) (Gower et al.

1999), and precipitation use efficiency of ecosystems (Paruelo et al. 1999). These eco-

system attributes have a critical influence on population and community-level processes

and may represent conservation targets per se. In this article, we review remote sensing

approaches that favor the incorporation of ecosystem functioning variables into the theo-

retical development and practice of biological conservation. We also present examples of

specific applications that use satellite-derived ecosystem functional variables to address

conservation issues.

Ecosystem functioning characterization through remote sensing

The seasonal dynamics of carbon gains has been proposed as an integrative descriptor of

ecosystem functioning given that it constitutes the input of energy into an ecosystem

(Virginia et al. 2001) and, consequently, determines many other, strongly-related fluxes

(e.g. secondary production, respiration, N uptake) (McNaughton et al. 1989). Carbon gain

dynamics can be readily characterized from vegetation spectral indices strongly associated

with the (spatio-temporal) patterns of primary production, such as the Normalized

Difference Vegetation Index (NDVI) (Tucker 1979) or the Enhanced Vegetation Index

(EVI) (Huete et al. 2002), both of which make use of the red and near infrared reflectances

of the Earth’s surface. Moreover, considering the direct relationship between vegetation

indices and the fraction of photosynthetically active radiation (fAPAR) intercepted by

green vegetation (Ruimy et al. 1994), it is possible to derive regional maps of Net Primary
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Production (NPP) utilizing radiation use efficiency values (Monteith 1977). As a result,

NDVI or EVI seasonal measurements, at the ecosystem level and from regional to global

scales, have emerged as the most suitable tools to quantify overall productivity and bio-

mass (Running et al. 2004; Turner et al. 2006), the seasonality in productivity (Piñeiro

et al. 2006; Potter and Brooks 1998) and the timing of other plant activities (i.e. pheno-

logical measurements) (Cleland et al. 2007). The combined analysis of these variables has

been used to identify ecosystem functional types, providing an overall description of

ecosystem diversity at the regional scale (Alcaraz-Segura et al. 2006; Paruelo et al. 2001).

In addition to vegetation indices, other variables derived from spectral data, such as

albedo and surface temperature, have been recently incorporated into analyses to quantify

ecosystem diversity and the conservation value of protected areas (Fernández et al. 2010).

Albedo is a key component of ecosystem energy balance, with broad implications for the

local climate and the internal dynamics of ecosystems (Bala et al. 2007). Furthermore,

changes in albedo have been used to detect the ecological degradation of ecosystems, such

as that due to overgrazing in deserts (Otterman et al. 2002) or changes in fire disturbance

regimes in forests (Lyons et al. 2008). Surface albedo can be directly estimated from broad

band reflectance data derived from satellite images (Liang 2000), which represent the

amount of short-wave radiation that is reflected by the Earth’s surface. Albedo is particu-

larly important and useful in studying ecosystem functioning in biomes characterized by

low vegetative cover (e.g. Fang et al. 2005) and where snow persists during part of the year

(e.g. Callaghan et al. 2004), and its use has been increasing in forested regions (Ollinger

et al. 2008). Surface temperature measures sensible heat and constitutes another key

component of the ecosystem energy balance that has been used in conjunction with NDVI

and albedo to identify ecosystem functional diversity (Fernández et al. 2010), as well as to

monitor inter-annual vegetation dynamics (Julien and Sobrino 2009). In addition, different

algorithms combine surface temperature, albedo, and NDVI to estimate heat partitioning

into latent and sensible fluxes (Kustas and Anderson 2009). Understanding patterns of heat

partitioning can help discern past species range shifts and anticipate future climate change-

induced alterations of biodiversity (Fischer et al. 2009).

Incorporating ecosystem functioning into conservation biology practice

Ecological processes described by remote sensing techniques, together with field studies or

simulation models, can be used to obtain useful information and derive conservation

actions for different biodiversity entities and organization levels (e.g. populations, species,

or ecosystems) (Fig. 1). In this section, we outline specific targets based on examples

drawn from the literature.

Conservation of populations and species diversity

The conservation of species populations and diversity has been the primary focus of

conservation biology studies since the emergence of the discipline. Key research goals

include understanding which habitat conditions (i.e. quantity and characteristics of the

habitat) are required to ensure species persistence; understanding the effects of environ-

mental variability on population parameters; and predicting how environmental change

may affect the distribution, demography and viability of populations. All of these objec-

tives involve diverse scales of biological organization requiring multidisciplinary

approaches to their study, which has prompted a gradual incorporation of the principles and
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methods of many different research areas, ranging from genetics to landscape ecology. The

inclusion of indicators of ecosystem functioning has the potential to contribute, in a similar

way, to addressing these questions. Seminal reviews by Pettorelli et al. (2005), Gillespie

et al. (2008), and Pettorelli et al. (2011) have highlighted the rapid increase in the use of

spectral vegetation indices—mostly NDVI—in animal ecology research, as well as the

great potential of this index for understanding the impacts of environmental change on

species and populations. These approaches are essentially inspired by classical principles

Fig. 1 General scheme of conservation applications derived from ecosystem functioning characterization
using remote sensing approaches, among others. Ecological processes and properties may address different
entities depending on the focus of the conservation requirements to derive specific actions
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concerning the relationships between energy availability and the size and distribution of

animal home ranges, vital rates of individuals, population size and density, and species

richness. However, applications using ecosystem functioning indices in species conser-

vation are still incipient. Here we discuss some representative examples illustrating the

importance of increasing efforts in this direction.

Habitat modelling and assessment

Understanding the characteristics and the spatial distribution of species habitats is critical

for assessing the conservation status of populations, designing reserves, predicting species

distributions and their responses to environmental change, and preserving and restoring the

ecological conditions required to sustain threatened populations. Species-environment

models have become some of the most widespread tools used to address these questions

(Guisan and Thuiller 2005), although they predominately rely on descriptors of spatial

environmental heterogeneity, while neglecting the effects of temporal variability (but see

e.g. Franklin 2010). Wiegand et al. (2008) showed that habitat assessment for an endan-

gered population of brown bears (Ursus arctos arctos) in a marginal population in Spain

was substantially improved by considering the effects of seasonal and inter-annual vari-

ability in ecosystem functioning. The species habitat quality was constrained by seasonal

pulses in primary production as defined by NDVI: those areas where bears exhibited higher

reproductive performance (i.e. high quality habitats) presented a stronger seasonality and a

narrower spatial variability in ecosystem functioning. Furthermore, models showed that

habitat quality can be ordered according to the dynamics of NDVI, consistent with the

evolutionary adaptations of brown bears to track pulsed food resources. High-quality areas

occurred under highly specialized and marginal ecosystem conditions which are important

to preserve in order to maintain the population. This approach based on the identification of

gradients of habitat quality, not just habitat suitability, helps to prioritize conservation

targets, and the analysis of NDVI revealed the disproportionate impact that alterations in

ecosystem functioning could have on species conservation.

In another example, habitat assessment for the Giant Panda (Ailuropoda melanoleuca)

emphasized the importance of considering ecosystem phenology for its ability to capture

information regarding both the distribution of food resources and human disturbances

(Tuanmu et al. 2011). Models based on the Wide Dynamic Range Vegetation Index

(WDRVI) facilitated the temporal transferability of model predictions and were appro-

priate for monitoring changes in wildlife habitat as reflected by changes in the phenology

of the land surface.

These insights, combined with the availability of continuous, extensive remote sensing

data, advocate the development of ecosystem monitoring protocols aimed at providing a

continuous assessment of the status of the habitats of species. However, few attempts have

been made in this area. Coops et al. (2009) proposed a Dynamic Habitat Index (DHI),

which included the minimum, the mean and the variability of fPAR, and suggested that the

regional analysis of DHI over time would help detect significant impacts on species and

predict how distributions and diversity may be affected by environmental change. The

successful incorporation of this or similar indices into conservation practice will require a

rigorous evaluation of their capacity to quantify species habitat loss and degradation. In

addition, practical issues such as the definition of species-specific thresholds of habitat

change need to be resolved before these tools can be transferred to managers.
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Population dynamics and viability

Species conservation planning requires a thorough consideration of the factors affecting the

size of populations and how this size varies in time and with environmental change (Boyce

1992). In essence, environmental factors affect population dynamics through their effects

on reproduction, mortality and population growth and movement patterns, with all of these

processes dependent on the ecosystem capacity to provide usable energy to organisms.

Recent remote sensing applications have shown, for example, that fecundity in a popu-

lation of Savanna elephants (Loxodonta Africana) was dependent on the seasonal levels of

primary production in such a way that NDVI was a reliable predictor of yearly differences

in population recruitment rates (Wittemyer et al. 2007). Furthermore, cycles in ecosystem

productivity synchronized reproduction across the population and were responsible for

population fluctuations, which have important implications for harvesting designs and

species recovery efforts. NDVI also correlates with offspring survival in elephants

(Wittemyer 2011) and other herbivores (Pettorelli et al. 2007), indicating that post-birth

surrogates of primary production are also an important indicator of breeding success.

The correlation between indicators of primary production and survival rate has also

revealed mechanisms of demographic synchronization among populations of migratory

species. Schaub et al. (2005) demonstrated that the annual survival of storks (Ciconia
ciconia) that nest in different parts of Europe was correlated with NDVI dynamics at a

single wintering area in the Sahel, which appeared to affect the growth rate of breeding

populations throughout Central Europe. In the endangered Egyptian vulture (Neophron
percnopterus) a positive relationship has also been observed between NDVI measured

within breeding territories and juvenile survival, and between NDVI and survival of all age

classes in wintering areas (Grande et al. 2009).

Movements of individuals across the landscape have also been related to remotely-

sensed vegetation activity. Using evolutionary programming models in combination with

spatio-temporal patterns of NDVI, Boone et al. (2006) predicted the migratory trajectories

of wildebeest simulating the adjustment of evolutionary responses of animal movements to

forage optimization. The relationship between herbivore movements and the spatial and

temporal variability in primary production (Mueller et al. 2011) has important conservation

implications, such as predicting the location of large herbivore herds (Musiega and Kazadi

2004) and assessing the negative impacts of land-use and linear infrastructures on popu-

lation connectivity (Ito et al. 2005).

Ecosystem functioning can considerably help disentangle more complex questions such

as the interaction between density-dependent and environment-driven demographic pro-

cesses in determining population dynamics. Using the Enhanced Vegetation Index (EVI),

Bardsen and Tveraa (2012) recently showed how increased vegetation greenness in

summer compensated for negative density-dependence effects on individual reproduction

costs, reproductive allocation and breeding success in female reindeers (Rangifer
tarandus).

We expect that the opportunity to incorporate spectral indices of ecosystem func-

tioning will represent an important advance in the modeling of population dynamics for

species conservation. More traditional applications have demonstrated the importance of

considering the variability in weather phenology for predicting population demography

(e.g. Rodriguez and Bustamante 2003); however, the direct links between ecosystem

phenology and population parameters were not easy to assess until the development of

remote sensing applications. Vegetation indices have demonstrated their ability to out-

perform the predictive power of variables such as rainfall in population demography
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studies (Rasmussen et al. 2006), and they provide a more direct representation of the

underlying ecological regulators. In addition, conservation prospects under a changing

climate will require more careful consideration of the effects of environmental variability

on population dynamics, taking into account changes not only in temperature and

precipitation regimes (Verboom et al. 2010), but also in ecosystem-level processes.

Managing carrying capacity for herbivores

A major challenge for conservation practitioners is to devise management systems that

integrate goals related to wildlife and local livestock activities (Madhusudan 2004). An

objective and spatially-explicit quantification of aboveground net primary production

(ANPP) and its intra- and inter-annual variability would allow for the delineation of

sustainable stock densities and grazing areas and timing, based on the relationship between

ANPP and herbivore consumption (Oesterheld et al. 1998; Oesterheld et al. 1992). A pilot

system with domestic herbivores has already been implemented to support grazing mana-

gement based on monitoring ANPP (estimated from data provided by the MODIS sensor)

on extensive ranches in the Argentine Pampas (Grigera et al. 2007), and this system could

be directly applied to protected areas (Oyonarte et al. 2010). Tracking both herbivore stock

densities and ANPP can be used to monitor grazing impacts on grassland and savannas

(Manseau et al. 1996) or to assess the role of overgrazing on desertification processes

(Paruelo et al. 2008).

Species–energy relationships and conservation

Lastly, the conservation of biodiversity depends on our capacity to anticipate the effects of

environmental variability on the species composition of communities. For this, the char-

acterization of species–energy relationships on the basis of remote sensing has already

contributed to the understanding of both geographic and fine-scale patterns in species

diversity of birds, showing a direct relationship between seasonal species richness and

seasonal measures of NDVI (Hurlbert and Haskell 2003). However, Phillips et al. (2010)

noticed that sign and strength of the species–energy relationship in North America was

context-dependent, suggesting that bird species richness was positively affected by primary

production in low-energy areas but negatively affected in high-energy areas. They pointed

out that these differences should be taken into account in the design of specific manage-

ment strategies, including the manipulation of nutrients and vegetation and the manage-

ment of disturbances such as fires, logging and grazing in order to favor bird communities.

We must emphasize, however, that biodiversity management should focus on the main-

tenance and restoration of biodiversity, not maximizing species richness (Lindenmayer and

Hunter 2010). Therefore, species-energy approaches will require a deeper understanding of

the relationships between ecosystem energy and biodiversity values, such as the number of

rare species and species evenness, in order to better contribute to conservation practices.

Despite the increasing popularity of vegetation indices such as NDVI and EVI in

species ecology, the number of ecosystem functioning descriptors used in conservation

applications is limited in comparison to the possibilities offered by remote sensing (e.g. see

Pfeifer et al. 2012). A few studies have recently incorporated remote-sensing variables,

such as fPAR (Coops et al. 2009), Net Primary Production (NPP) and Gross Primary

Production (GPP) (Phillips et al. 2008; Phillips et al. 2010) in analyses of species richness.

These indices purportedly provide a more straightforward description of the ecosystem

variables of interest; however, there are a number of assumptions in their calculations as
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well as spatial and temporal accuracy differences that should be carefully considered. For

example, the accuracy of GPP estimates varies highly depending on factors such as vege-

tation type, and these estimates may not improve the predictive value of EVI in some

applications (Pfeifer et al. 2012). In addition to vegetation productivity, other ecosystem

functioning indices have great potential to address species conservation problems, such as

descriptors based on the energy balance of the land surface that provide information about

land degradation (Garcı́a et al. 2008) and disturbances (Mildrexler et al. 2009), which can

be used to monitor impacts on species habitats.

Monitoring and selection of protected areas

Protected areas as points of reference for monitoring global environmental changes

Anthropogenic impacts can be monitored and assessed by comparing differences in eco-

system functioning of altered areas relative to areas less impacted by human activities

(Schonewald-Cox 1988). This approach constitutes a long-standing argument for the

conservation value of natural areas (Jenkins and Bedford 1973) and gives special impor-

tance to protected area networks, serving as reference systems across different environ-

mental conditions. Several studies have used NDVI attributes (Alcaraz-Segura et al. 2008a,

b, 2009b), surface temperature (Fernández et al. 2010), and actual evapotranspiration

(Garbulsky and Paruelo 2004) to derive reference situations from protected area networks

and to monitor global environmental changes, by comparing protected ecosystems with

those subjected to greater human disturbance.

The availability of datarecords covering several decades (e.g. AVHRR/NOAA pro-

ducts) provides an opportunity to separate the effects on ecosystem functioning due to

climatic or atmospheric changes from those related to land-use changes. For example,

compared to protected areas, agriculture in temperate South America reduced C gains in

highly productive systems and increased them in those systems with low productivity

(Paruelo et al. 2001). These analyses also demonstrated that human modification resulted

in more seasonal systems.

Other analyses have provided quantitative evidence for the ecological effectiveness of

conservation policies at the national or global scale. Tang et al. (2011) provide a global

analysis of the role of protected areas in maintaining ecological processes. They used

NDVI dynamics as a measure of the variation over a 25 year period of plant production in

the core, boundary and surroundings of more than 1000 protected areas. At a national level,

Pelkey et al. (2000) assessed changes in vegetation condition with the aid of NDVI time-

series, observing that national parks and recreation areas in Tanzania presented signifi-

cantly better conservation status than the non-protected areas. The NDVI seasonal

dynamics were also used to detect differences in the phenological behavior of similar areas

due to their different management regimes in natural parks of Spain (Alcaraz-Segura et al.

2008a; Durante et al. 2009).

Development of monitoring and warning systems for protected areas

Incorporating satellite-based indicators of ecosystem functioning may substantially

improve monitoring and warning systems of protected areas (Duro et al. 2007). Ideally,

ecological indicators must be able to capture the spatial and temporal variability of eco-

system processes over extensive areas and in different regions, and should be capable of

tracking the integrity of ecological processes (Dale and Beyeler 2001). In addition,
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indicators should be sensitive to both long-term and rapid changes, particularly the latter

when the aim is to devise alarm systems. Indicators of ecosystem functioning derived from

spectral data match these criteria. For instance, a critical limitation to studying temporal

dynamics of NPP and its relationship with climatic variables is the lack of long-term data

(Jobbagy et al. 2002; Knapp and Smith 2001). Fortunately, this limitation may be mitigated

by the availability of NDVI or EVI time-series. Paruelo et al. (2005), working in protected

arid areas of southeastern Spain, found that attributes related to the spatial variability and

temporal dynamics of absorbed photosynthetically active radiation (APAR) in areas with

intense human modification (outside the protected area) displayed lower sensitivity to

changes in precipitation than those areas under protection. The description of such

differences in the response of APAR to water availability was proposed as the basis

of a system for monitoring desertification of drylands.

On the other hand, since many satellites provide data with a 1–20 day frequency,

monitoring satellite-derived functional indicators over time can be the basis of early-

warning systems that allow conservation managers to actively manage in the short term.

This approach was used in the Assessment of African Protected Areas project

(http://bioval.jrc.ec.europa.eu/APAAT/). Every 10 days, this alert system collects NDVI

and other satellite-derived data as indicators of ecosystem health (Hartley et al. 2007). By

comparing every new 10-day period with the same period in the historical record, sig-

nificant anomalies are quickly identified and ranked to produce a shortlist of environmental

events and protected areas that require further investigation and monitoring (Hartley et al.

2007). A similar idea has recently inspired a monitoring and warning system for the

Spanish Network of National Parks based on the use of NDVI-derived functional indicators

from MODIS images (http://www.magrama.gob.es/es/ministerio/organizacion/organis

mos-publicos/organismo-autonomo-parques-nacionales-oapn/plan-seg-ev-pn/seguimiento-

ecologico/). Furthermore, monitoring systems based on remote sensing can be extended to

ecological forecast systems through the incorporation of ancillary data and simulation

models. This is the case for the Terrestrial Observation and Prediction System of Yosemite

National Park (Nemani et al. 2009) that incorporates operational satellite data, microcli-

mate mapping, and ecosystem simulation models to characterize ecosystem status and

trends from a functional perspective.

All these monitoring approaches to ecosystem functioning allow for cost-efficient

monitoring schemes (Crabtree et al. 2009) and provide easy to interpret indicators of

ecosystem response to environmental changes (Pettorelli et al. 2005). In addition, their

implementation exhibits low impacts on ecosystems, a critical requirement for any

monitoring system (Havstad and Herrick 2003).

Assessment of ecosystem representativeness and selection of protected areas

At the ecosystem level, functional attributes may be particularly helpful in protected area

assessments to better represent the regional heterogeneity in geographic priority settings.

Gap analyses aim to determine how well the entire range of species, ecosystems, or

environmental conditions is protected by a reserve network. Despite such a clear goal,

identifying quantitative, general descriptors of representativeness and singularity (the

commonness or uniqueness of the ecosystems of a protected area in the regional context)

imposes a major challenge to reserve implementation (Overton and Leathwick 2001). Such

descriptors should be based on ecosystem properties that can not only be identified in a

particular site (e.g. National Parks or private reserves) but also be compared in the regional

context under a common protocol (Austin and Margules 1986; Mackey et al. 1989). To our
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knowledge, only one study has incorporated remote sensing indicators of ecosystem

functioning to analyze the singularity and representativeness of protected areas. Cabello

et al. (2008) used the annual NDVI integral and relative range as surrogates of spatial

patterns in ecosystem carbon gains to evaluate the Spanish Network of National Parks and

to guide the implementation of the Uruguayan System of Protected Areas (Fig. 2). The

functional space defined by these two variables characterizes the regional heterogeneity of

ecosystem functioning in terms of productivity and seasonality (for details see Alcaraz-

Segura 2008; Alcaraz-Segura et al. 2009a). National Parks in Spain and candidate sites in

Uruguay were compared in this space with the rest of the natural ecosystems in each

country. Those parks or sites exhibiting combinations of productivity and seasonality that

were widespread in the regional context were considered representative, whereas sites

corresponding to unique or rare combinations of productivity and seasonality were con-

sidered singular. The Spanish Network showed that traditional protection criteria were able

to comprise the whole range of functional combinations, but were partially biased towards

singular sites. In Uruguay, results demonstrated low functional heterogeneity of the

extensive but homogeneous natural grasslands that dominate the country and revealed new

reserve candidates to protect both representative and singular ecosystems. In both cases,

the functional characterization of ecosystems allowed for the regional contextualization of

protected areas based on ecological processes. This approach can help in developing layers

in gap analyses for designing networks of protected areas in relation to ecosystem func-

tioning, in addition to biodiversity features (e.g. biomes, ecosystems, habitats, species).

Direct evaluation of ecosystem services

Quantification of the supply of ecosystem services and subsequent dissemination of

information to decision makers and the general public are critical for the sustainable

management of natural resources and to support conservation decisions and landscape

planning (Meyerson et al. 2005). However, in order to move forward, some limitations still

need to be addressed. First, evaluations of ecosystem services from plot-based and static

indicators do not provide complete coverage of a territory, and do not capture the rates of

service supply and demand (Carpenter and Folke 2006). Second, there is an urgent need for

quantifying changes in ecosystem dynamics, as well as their implications for ecosystem

service provision (Boyd and Banzhaf 2007; Egoh et al. 2007). Finally, the areas that supply

ecosystem services must be mapped to quantify the conservation benefits that they provide

(Naidoo et al. 2008).

The combination of satellite-derived attributes with environmental databases and field

data can be effectively used to estimate and monitor both the level of provision of eco-

system services over large areas (e.g. He et al. 2005; Nosetto et al. 2005) and their value

with regard to the conservation interest of protected areas (Haslett et al. 2010). For

example, He et al. (2005) presented a model for valuing ecosystem service in China based

on satellite-derived estimates of NPP. Volante et al. (2012) and Caride et al. (2012), using

remotely sensed data and modelling techniques, provided estimates of carbon-related

services for forests and grasslands of South America. In addition, regional quantification of

carbon gains in protected areas supports their protection given that they help address

ecological problems related to climate change issues (Dudley et al. 2010).

Other services can also be estimated through satellite-derived descriptors, such as

warming mitigation through evaporative cooling in tropical forests, or the effect of albedo

on climate regulation through changes in the duration of snow-pack in boreal forests

(Bonan 2008). Remote sensing data demonstrated that grassland afforestation in the
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Uruguay River basin increased evapotranspiration by 80 %, inducing a decrease in aquifer

recharge and water supply (Nosetto et al. 2005). In addition, forage monitoring programs

(e.g. Grigera et al. 2007) may also improve the estimation of services with market value,

such as livestock production and game animals. In all cases, satellite-based functional

Fig. 2 Analysis of representativeness of Spanish national parks (a) and Uruguayan candidate protected
areas (b) based on ecosystem functional attributes derived from remote sensing. For each country, the
approach locates the protected areas in the functional space defined by the whole range of annual NDVI
integrals (NDVI-I, an estimator of annual C gains) and the relative range of variation in light interception
during the year (RREL, an indicator of seasonality). Points correspond to the discrete area defined by a
pixel. Grey points correspond to natural (non-agricultural) areas. Protected sites coincident with repetitive
combinations of productivity and seasonality were considered representative, while sites corresponding to
unique or rare combinations were considered singular. (Adapted from Cabello et al. 2008)
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attributes can be directly linked to ecosystem services, can be mapped, and allow for a

direct incorporation of ecosystem service information into conservation planning.

Planning and monitoring ecological restorations

Ecological restoration is an important component of conservation policies aimed to

re-establish the functioning of degraded ecosystems. The importance of planning resto-

ration by defining objectives at the ecosystem level, specifically focusing on water, energy,

and matter fluxes, is well recognized (Ehrenfeld 2000). Remote sensing techniques min-

imize the economic and logistic restrictions of monitoring programs (Korb and Fule 2008;

Malmstrom et al. 2009), which are the most common restrictions for devising reliable

monitoring systems in restoration plans (Ruiz-Jaén and Mitchell Aide 2005). Biophysical

variables such as NPP, evapotranspiration, and albedo help define quantifiable objectives

and actions that include ecosystem process dynamics. For example, biomass accumulation

rate has been used as an indicator of nutrient dynamics restoration in tropical secondary

forests (Feldpausch et al. 2004), while nutrient status has been evaluated from satellite

images to assess the restoration potential of eucalypt grassy woodlands in Australia (Zerger

et al. 2011). Tuxen et al. (2008) implemented a technique using NDVI to document

vegetation colonization in a restored salt marsh, while Leon et al. (2012) used NDVI time-

series to evaluate vegetation responses to wildfires in different pre-fire restoration regi-

mens. Evapotranspiration estimates derived from MODIS EVI and ground data (Nagler

et al. 2005) have been used to evaluate water use by invasive Tamarix stands compared to

native riparian species in the western United States (Nagler et al. 2008). This evaluation

revealed a cost-effective restoration strategy, which eliminated the need for the complete

removal and replacement of Tamarix.

Lastly, indicators of ecosystem functioning may also represent a valuable tool in pro-

active restoration initiatives, such as proposals to increase carbon sequestration (Harris

et al. 2006), assess wetland restoration (Melesse et al. 2006), or characterize trends,

memory effects, and resilience in large scale efforts (Walters 1986).

Conclusions and perspectives

The examples outlined in this article represent a sample of the applications of ecosystem

functional descriptions in conservation biology (Fig. 1). The potential for using these

ecosystem functioning attributes derives, on one hand, from the strong conceptual rela-

tionship between these attributes and the two central objectives of conservation practice,

biodiversity preservation and conservation of ecosystem processes, and, on the other hand,

from the possibility of using remotely sensed data to monitor them. The implementation of

conservation actions, as well as the evaluation of the results of management interventions,

requires information on functional aspects of different levels of organization (populations,

species, communities, and ecosystems). As we have demonstrated, satellite-derived

functional ecosystem variables can be used to better understand the abundance, distribu-

tion, and population dynamics of species of conservation concern, to assess the role of

protected areas in environmental conservation and monitoring of environmental changes,

to directly estimate the level of ecosystem services supply, and to design and monitor

ecological restorations. In addition, remote sensing products not only provide accurate

estimates of key functional variables, but also fulfill the key requirements of monitoring

systems.
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The incorporation of new variables with a clear relationship to the functioning dynamics

of ecosystems improves the possibility of diagnosing an ‘‘ill-functioning’’ ecosystem.

Nonetheless, no matter how sophisticated the diagnostic tool, it cannot replace an in-depth

analysis of the system, its natural history, and its environmental, socio-economic, geo-

political, and cultural context. Therefore, the approaches that we present in this study are

not intended to replace current conservation practices, but rather to complement them.

However, as in the field of medicine, a new analytical tool may help improve the diagnosis

by identifying problems previously hidden, and as a result allow for better-informed

decisions.
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Soulé ME, Wilcox B (1980) Conservation biology: an evolutionary-ecological perspective. Sinauer Asso-

ciates Inc, Sunderland
Tang Z, Fang J, Sun J, Gaston KJ (2011) Effectiveness of protected areas in maintaining plant production.

PLoS ONE 6(4):e19116
Tuanmu MN, Vina A, Roloff GJ, Liu W, Ouyang ZY, Zhang HM, Liu JG (2011) Temporal transferability of

wildlife habitat models: implications for habitat monitoring. J Biogeogr 38:1510–1523
Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote

Sens Environ 8:127–150
Turner DP, Ritts WD, Cohen WB, Gower ST, Running SW, Zhao M, Costa MH, Kirschbaum AA, Ham JM,

Saleska SR, Ahl DE (2006) Evaluation of MODIS NPP and GPP products across multiple biomes.
Remote Sens Environ 102:282–292

Tuxen KA, Schile LM, Kelly M, Siegel SW (2008) Vegetation colonization in a restoring tidal marsh: a
remote sensing approach. Restor Ecol 16:313–323

Verboom J, Schippers P, Cormont A, Sterk M, Vos CC, Opdam PFM (2010) Population dynamics under
increasing environmental variability: implications of climate change for ecological network design
criteria. Landsc Ecol 25:1289–1298

Virginia RA, Wall DH, Levin SA (2001) Principles of ecosystem function. Encyclopedia of biodiversity.
Academic Press, San Diego, pp 345–352

Volante JN, Alcaraz-Segura D, Mosciaro MJ, Viglizzo EF, Paruelo JM (2012) Ecosystem functional
changes associated with land clearing in NW Argentina. Agric Ecosyst Environ 154:12–22

Walters CJ (1986) Adaptive management of natural resources. McGraw-Hill, New York
Wiegand T, Naves J, Garbulsky MF, Fernandez N (2008) Animal habitat quality and ecosystem functioning:

exploring seasonal patterns using NDVI. Ecol Monogr 78:87–103

3304 Biodivers Conserv (2012) 21:3287–3305

123



Wittemyer G (2011) Effects of economic downturns on mortality of wild African Elephants. Conserv Biol
25:1002–1009

Wittemyer G, Rasmussen HB, Douglas-Hamilton I (2007) Breeding phenology in relation to NDVI
variability in free-ranging African elephant. Ecography 30:42–50

Zerger A, McIntyre S, Gobbett D, Stol J (2011) Remote detection of grassland nutrient status for assessing
ground layer vegetation condition and restoration potential of eucalypt grassy woodlands. Landsc
Urban Plan 102:226–233

Biodivers Conserv (2012) 21:3287–3305 3305

123


	The ecosystem functioning dimension in conservation: insights from remote sensing
	Abstract
	Introduction
	Ecosystem functioning characterization through remote sensing
	Incorporating ecosystem functioning into conservation biology practice
	Conservation of populations and species diversity
	Habitat modelling and assessment
	Population dynamics and viability
	Managing carrying capacity for herbivores
	Species--energy relationships and conservation

	Monitoring and selection of protected areas
	Protected areas as points of reference for monitoring global environmental changes
	Development of monitoring and warning systems for protected areas
	Assessment of ecosystem representativeness and selection of protected areas

	Direct evaluation of ecosystem services
	Planning and monitoring ecological restorations

	Conclusions and perspectives
	Acknowledgments
	References


